64 research outputs found

    Microscopic Structure of High-Spin Vibrational Excitations in Superdeformed 190,192,194Hg

    Get PDF
    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed bands in 190Hg, 192Hg, and 194Hg. The K=2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. At finite frequency, however, the interplay between rotation and vibrations produces different effects depending on neutron number: The lowest octupole phonon is rotationally aligned in 190Hg, is crossed by the aligned two-quasiparticle bands in 192Hg, and retains the K=2 octupole vibrational character up to the highest frequency in 194Hg. The gamma vibrations are predicted to be higher in energy and less collective than the octupole vibrations. From a comparison with the experimental dynamic moments of inertia, a new interpretation of the observed excited bands invoking the K=2 octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in SD Hg nuclei.Comment: 22 pages, REVTeX, 12 postscript figures are available on reques

    The nuclear collective motion

    Full text link
    Current developments in nuclear structure are discussed from a theoretical perspective. First, the progress in theoretical modeling of nuclei is reviewed. This is followed by the discussion of nuclear time scales, nuclear collective modes, and nuclear deformations. Some perspectives on nuclear structure research far from stability are given. Finally, interdisciplinary aspects of the nuclear many-body problem are outlined

    Coexistence of collective oblate and superdeformed prolate shapes in 196Pb

    No full text
    The 196Pb nucleus was populated via the 184W(16O,4n)196Pb and 186W(16O,6n)196Pb reactions at beam energies of 98 MeV and 120 MeV, respectively. A new Delta I=1 magnetic dipole band has been observed. This band is believed to be built on a collective oblate configuration involving high-K proton orbitals coupled to two rotationally aligned i13/2 neutrons. The previously observed 196Pb superdeformed band was also populated in these reactions

    First observation of collective dipole rotational bands in the neutron-deficient bismuth nuclei

    No full text
    The nucleus 202Bi was populated via the 196Pt(11B,5n)202Bi reaction at a beam energy of 75 MeV. Three regular sequences of magnetic dipole transitions have been found. A comparison is made with the known Delta I=1 rotational bands seen in the neighbouring Pb nuclei. An interpretation in terms of collective oblate configurations involving high-K proton and alignable neutron orbitals is suggested
    • 

    corecore